skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nguyen, Evuilynn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce the immersion poset$$({\mathcal {P}}(n), \leqslant _I)$$ ( P ( n ) , I ) on partitions, defined by$$\lambda \leqslant _I \mu $$ λ I μ if and only if$$s_\mu (x_1, \ldots , x_N) - s_\lambda (x_1, \ldots , x_N)$$ s μ ( x 1 , , x N ) - s λ ( x 1 , , x N ) is monomial-positive. Relations in the immersion poset determine when irreducible polynomial representations of$$GL_N({\mathbb {C}})$$ G L N ( C ) form an immersion pair, as defined by Prasad and Raghunathan [7]. We develop injections$$\textsf{SSYT}(\lambda , \nu ) \hookrightarrow \textsf{SSYT}(\mu , \nu )$$ SSYT ( λ , ν ) SSYT ( μ , ν ) on semistandard Young tableaux given constraints on the shape of$$\lambda $$ λ , and present results on immersion relations among hook and two column partitions. The standard immersion poset$$({\mathcal {P}}(n), \leqslant _{std})$$ ( P ( n ) , std ) is a refinement of the immersion poset, defined by$$\lambda \leqslant _{std} \mu $$ λ std μ if and only if$$\lambda \leqslant _D \mu $$ λ D μ in dominance order and$$f^\lambda \leqslant f^\mu $$ f λ f μ , where$$f^\nu $$ f ν is the number of standard Young tableaux of shape$$\nu $$ ν . We classify maximal elements of certain shapes in the standard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power sum symmetric functions on conjectured lower intervals in the immersion poset, addressing questions posed by Sundaram [12]. 
    more » « less
  2. null (Ed.)